MODULE 24 CONCURRENT PROGRAMMING

CREDIT POINTS 7.5

STATUS Core

ASSESSMENT Continuous Assessment 40%
Examination 60%

TOTAL CONTACT HOURS: 60

Lecture: 36 Practical: 24

Tutorial: Other:

TOTAL STUDENT EFFORT: 150

Aims

This module aims to provide you with an understanding of the need for, and advantages of, concurrent
systems; to master a new programming paradigm that is different from that of the single threaded one;
how multiple competing processes are managed by underlying operating systems such as Unix, Linux,
Windows NT and Window2000; a description of how processes and threads are created in Java; a
description and understanding of the many classical problems arising with concurrent tasks; an
awareness of the need for such issues as fairness, process synchronisation, deadlock avoidance, etc; the
ability to write concurrent programs to solve real world problems; an understanding of multi-core
architectures and their significance for the implementation of concurrent systems, an introduction to
server design using the client server model.

Learning Outcomes

Upon successful completion of this module, you should be able to:

analyse the advantages of concurrent programming

explain the necessity for synchronisation when sharing resources

solve problems that require synchronisation

explain race conditions and deadlocks

describe the role of semaphores and events in concurrent systems

solve problems requiring both semaphores and events as part of the solution

describe the problems associated with resource allocation

describe the difference between the shared memory model for threads and the distributed
memory model for processes

NG~ WNE

9. describe the client server architecture
10. write concurrent programs and client/server applications in a high-level language such as
Java, C#, C or Ada

Indicative Content

Topic Description

Fundamentals Motivation for concurrency; simple examples; advantages;
disadvantages

Idea of a process Process versus threads; priority of processes; process
creation and destruction (Fork in Unix, Task in Ada, thread
in java); processes sharing memory; dynamic process
creation; facilities for concurrency provided by
programming languages and operating systems; C# ,
Windows, Linux and Unix; Java virtual machine; writing
threads in Java

Resource sharing Mutual exclusion; semaphores; fairness; deadlock; starvation;
monitors; protected objects; condition variables; various kinds of
shareable resources, e.g. memory, files, printers, etc; degrees of
sharing, e.g. grab whole file or grab a single record; deadlock
prevention. Classic problems : readers / writers, producer /
consumer, bounded buffer. General problems requiring
concurrent solutions, e.g. lift control, train control, etc.

Allocating resources and Strategies for allocating resources; fairness; resource allocation
scheduling algorithms. Necessity for scheduling algorithms, thread priority,
writing a round robin scheduler using dynamic allocation of
priority values.

Communicating processes Distributed memory model; Pipes; channels; message passing;
(processes without shared remote procedure call; process identities; multi-casting —
memory) broadcast to multiple processes; problems of deadlock;

synchronisation.

Applications of concurrency Server design and the implementation of client server
architecture over sockets. Deploying services on a client server
architecture.

